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Abstract 
 
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an 
attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film 
fabrication studies demonstrate that ternary single source precursors (SSP’s) can be used in either a hot 
or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2 and 
CuGaInS2 at reduced temperatures (400 to 450 °C), which display good electrical and optical properties 
suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS) 
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and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS 
thin-films on various substrates at reduced temperatures. 
 
1. Introduction 
 
Photovoltaic modules based on I-III-VI2 ternary chalcopyrite absorber layers, have been the focus of 
intense investigation for over two decades. The use of chalcopyrite absorbers are highly appealing since 
their bandgaps correlate well to the maximum photon power density in the solar spectrum for both 
terrestrial (AM 1.5), and space applications (AM0), while displaying long term stability and excellent 
radiation tolerance [1–4]. Additionally, by adjusting the percent atomic composition of either Ga for In 
and/or S for Se, the bandgap can be tuned from 1.0 to 2.4 eV, thus permitting the fabrication of multi-
junction solar cells [5]. One of the key technical issues outlined in the 2001 US Photovoltaic roadmap 
is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells.  
Thus, an important step for device fabrication for high specific power (WKg–1) thin film solar cells, is 
deposition onto flexible lightweight substrates. A novel approach is the use of ternary I-III-VI2 single 
source precursors (SSP’s) in a spray chemical vapour deposition (CVD) process. Although, a rich and 
diverse array of binary SSP’s [6–8] are reviewed and tested, the number of known ternary SSP’s is still 
limited, as is their use in deposition processes [7].   Hence, in this paper we highlight recent advances, 
summarizing a highly promising technique for thin film growth, via molecular design of ternary SSP’s 
for use in various spray CVD processes.  
 
2. Experimental 
 
The SSP’s are synthesized based on a modification of the procedure reported by Kanatzidis [9,10]. 
Films were deposited on conventional soda-lime, corning 7059 slides, Si(100), and Si(111) substrates. 
Thin films of CuGaS2 and CuGaxInyS2 were deposited using [{PPh3}2Cu(SEt)2In(SEt)2] 1 and the new 
Ga analogue 2, which was not fully characterized [11] in a custom-made horizontal hot-wall spray 
CVD reactor [9,12,14], whereas films of CuInS2 were deposited using [{PBu3}2Cu(SEt)2In(SEt)2] 3 in 
a custom-made vertical cold wall spray CVD reactor [13]. The CuGaS2 deposition was conducted using 
a 0.011 M mixed toluene/methylene bromide solution (86 vol % toluene) (1.3 mmol; 1.10 g); substrate 
temperature of 450±5 °C with an Ar carrier-gas flow rate of 4.0 L/min [11].  The Cu(In,Ga)S2 
deposition was conducted with similar deposition parameter used for CuGaS2 above except, a 0.01 M 
toluene solution of the In 1 and Ga 2 SSP’s in an attempt to achieve a ratio of  In0.75Ga0.25.  Films were 
characterized by optical transmission spectroscopy (Perkin Elmer, Lambda-19, Cary 5 UV-VIS-NIR 
spectrophotometer), scanning electron microscopy-EDS (Hitachi S-3000N), X-ray diffraction (Philips 
PW3710 : Cu Kα, 1.541 Å) and Van der Pauw four point probe system (Bio-Rad HL5500PC). 
Reported SEM-EDS measurements are accurate to ±3%.  
 
3. Results and Discussion 
 
We have previously reported the preparation and utility of ternary SSP’s to the semiconductor CuInS2 
in a horizontal hot wall spray CVD process [9,12,14]. We now report, the preparation of ternary SSP 
for the fabrication of thin-film CuGaS2, in addition, the versatility of ternary SSP’s in a spray CVD 
process is demonstrated by their use in either a hot and cold wall reactors of either horizontal or vertical 
configuration (Fig.1). Spray CVD studies utilizing the new Ga SSP in a toluene/CH2Br2 solution 
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afforded well-adhered, visually smooth and optically transparent dense thin film exhibiting a pink-
green surface tint.  X-ray diffraction (XRD) analysis confirmed the film to be 112 oriented, tetragonal 
single phase CuGaS2 (Fig. 2).  The 220/204 reflections and the 312/116 reflections were split consistent 
with the tetragonal distortion of the crystal lattice [15].  Lattice parameters a and c were calculated 
from X-ray d spacings, (1/d2 = 1/a2 (h2 + k2) + l2 1/c2; where h, k, and l are the Miller indices of 
individual reflections [16]), Table 1. Comparison of the data collected from the CuGaS2 thin film 
shows they are in good agreement with the JCPDS reference values for single-crystal CuGaS2 and with 
those reported in literature [17]. 
 
SEM images reveal the films are dense with an average grain size of 410 nm, with a columnar grain 
structure (Fig. 3(c) to (d)).  The surface microstructure consisted of faceted grains many of which 
exhibited a trigonal shape (Fig. 3(a) to (b)), which occurs as a result of close-packed intersecting (112) 
faces of the chalcopyrite lattice. These are the lowest surface-energy faces and typically control 
chalcopyrite morphology [8,18,19].   
 
The resistivity for the CuGaS2 thin film samples deposited at 450 °C on fused silica were determined 
using the four-point probe method [20] and found to be 15.6(4) Ω⋅cm, which is comparable to those 
reported in literature [20,21]. The optical bandgap of the films were determined from the derivative of 
the optical transmittance data (Fig. 4), which correlates well with the reported direct band gap of 
CuGaS2, Eg = 2.43 eV [22]. 
 
Initial studies using a homogeneous toluene solution of the two ternary SSP’s 1 (0.0075 M) and 2 
(0.0025 M) for fabrication of an alloy film Cu(In:Ga)S2 was also investigated [11].  Although a thin-
film was deposited, composition and microstructure varied along the length of the thin film.  XRD 
reflections representing the 112 planes were broad and complicated by the presence of an unidentified 
reflection in that region.  The 220/204 planes was represented by a single unresolved reflection that 
yielded an average grain size of ~40 nm.  The relative contribution of Ga and In to the multinary 
structure was determined by comparing the 2-theta values for this reflection in the multinary pattern to 
those in the patterns of the ternary end-members, CuInS2 and CuGaS2 (Fig. 5(f)).  The composition of 
each metal was assumed to vary linearly with 2-theta from 100% In to 100% Ga based on Vegard's 
Law.  The tetragonal splitting was neglected in the CuGaS2 pattern by averaging the 2-theta values for 
the 220 and the 204 reflections.  The atomic percent of Ga in the film was found to increase along the 
length of the film (front to rear), (Fig. 5).  A uniform composition over large areas was not achieved 
and none of the compositions were close to the expected In0.75Ga0.25 ratio. The variation in film 
composition is understandable since the Ga derivative decomposed at higher temperatures then its In 
analogue. Therefore, using two SSP’s with matching thermal profiles can provide an effective means 
for depositing multi-ternary films. 
 
The flexibility of the SSP’s in a spray CVD has been further demonstrated by their use in a cold wall 
vertical CVD reactor [13]. The XRD data obtained from the film grown using 
[{PBu3}2Cu(SEt)2In(SEt)2] 3 in a cold-wall reactor revealed the typical tetragonal chalcopyrite CuInS2 
phase with a 112 preferred orientation.    The band-gap for the film grown form the liquid precursor, 
derived from a plot of (α E)2 versus E (Fig. 6), was found to be ~1.46 eV.  Although annealing the film 
showed a shift to a higher gradient band edge, it was found to have minimal effect on the observed 
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bandgap. SEM-EDS analysis showed the CuInS2 thin-film to be near stoichiometric with atomic 
percents for Cu, In, and S as 26, 24, and 50 (±3%), respectively. 
 
4. Summary 
 
The versatility of the ternary SSP’s is clearly demonstrated by the preparation of various multi-ternary 
semiconductors. Spray CVD using SSP’s is a mild, simple, clean, and scalable technique for depositing 
CuME2 (E= VI, M= III) thin-films at reduced temperatures. Although tests for the deposition of the 
wide bandgap alloy Cu(Ga:In)S2, led to a non-homogenous film composition, it is evident the use of 
two SSP’s with similar thermal profiles, consistent film stoichiometry can be achieved. Spray CVD in 
conjunction with SSP design provides a proof-of-concept for a high manufacturability process. The 
work reported here on the molecular design of SSP’s for their use in a spray CVD process although still 
in its infancy, undoubtedly shows it as a mass producible, cost effective method for fabricating 
commercial thin film PV devices.  
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Fig. 1 Schematic of horizontal hot wall and vertical cold wall spray CVD reactors. 

 
 
 
 
 
 

 
 

Fig. 2  XRD pattern XRD of spray-CVD grown CuGaS2 film on Si(111).  Reflections correspond to those reported for 
Gallite in JCPDS reference # 25-0279 
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Fig. 3  SEM of CuGaS2 films deposited by spray CVD. a) surface view.  b) Surface view; 30° tilt showing triangular shape 
characteristic of 112-oriented crystals.  c) and d) edge views showing roughly columnar crystal-growth pattern.  

 
 
 
 
 
 

 
Fig. 4 a) Transmittance vs. wavelength for CuGaS2 thin film; (I = transmitted, Io= incident power; b) Plot of the 

derivative of the transmission data vs. energy. 
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Fig. 5 SEM images of the alloy film showing the variation in microstructure with composition. a–c)  Film deposited in the 
first centimeter: CuIn0.43Ga0.57S2.  d and e)  Film deposited in the last centimeter: CuIn0.27Ga0.73S2. f) XRD spectra 

highlighting the 220/204 reflections of a CuGaS2 film (bottom; Ts = 450 °C), a CuInS2 film (top; Ts = 400 °C) and alloy 
films having InxGay contents in the range: In0.43Ga0.57 – In0.27Ga0.73 (on fused silica). 

 
 
 
 
 
 

 

Fig. 6  A plot of (α E)2 vs. E for the film grown in the cold-wall reactor,  (α  is an absorption coefficient estimated from the 
optical transmittance data and E is a photon energy). 
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Table 1. Comparison of thin-film and single-crystal CuGaS2 lattice parameters, a and c, c/a, 
and the distortion parameter x. The d spacing of the 220 reflection was used to calculate a, 

and the d spacing of the 112 reflection was used with the calculated lattice parameter a  
to determine c. (x = 2 - c/a, given that a hypothetical c/a ratio of 2 would result in the  

absence of any tetragonal distortion) 

 
a (Å) c (Å) a/c x Thin film fabrication method 

5.353 10.495 1.9606 0.0394 Spray-CVD 
5.35 10.48 1.959 0.0410 Evaporated film [14] 

5.351 10.484 1.9593 0.0407 JCPDS card 25-0297:  
Single-crystal from the elements 
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